https://github.com/timm/auk/tree/v0
eg. Naive Bayes classifier. Finds class with highest liklihood
function likelihood(row,total,hypotheses,l,_Tables,k,m, like,h,nh,prior,tmp,c,x,y,best) { like = NINF ; # smaller than any log total = total + k * length(hypotheses) for(h in hypotheses) { nh = length(datas[h]) prior = (nh+k)/total tmp = log(prior) for(c in terms[h]) { x = row[c] if (x == "?") continue y = counts[h][c][x] tmp += log((y + m*prior) / (nh + m)) } for(c in nums[h]) { x = row[c] if (x == "?") continue y = norm(x, mus[h][c], sds[h][c]) tmp += log(y) } l[h] = tmp if ( tmp >= like ) {like = tmp; best=h} } return best }
No comments:
Post a Comment